skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gao, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The escalating challenges posed by extreme climate change and the rapid greenhouse effect have heightened stress and urgency among governments, researchers, and the public. Greenhouse gas (GHG) emissions, particularly carbon dioxide (CO2), have signi昀椀cantly contributed to rising atmospheric temperatures, with agriculture, forestry, and industrial activities accounting for 22 % and 17 % of global emissions, respectively. In 2022, global GHG emissions reached 53.8 Gt CO2eq, underscoring the critical need for net-zero technologies and a circular carbon economy. This review systematically evaluates the ef昀椀ciencies of non-thermal and electrochemical CO2 conversion technologies, including plasma, arti昀椀cial photosynthesis, and electrochemical methods, for achieving net-zero emissions. These advanced technologies offer promising pathways for converting CO2 into value-added chemicals, such as syngas, methanol, and formic acid, while reducing atmospheric CO2 concentrations. However, upscaling these technologies from laboratory to industrial scales presents signi昀椀cant challenges, including high energy consumption, economic feasibility, and environmental impacts. The review highlights the mechanisms of CO2 conversion, economic considerations, and the potential for industrial implementation. Priority research directions are identi昀椀ed, focusing on ecological footprints, green supply chains, and the integration of renewable energy sources. By addressing these challenges, non-thermal and electrochemical CO2 conversion technologies can play a pivotal role in mitigating climate change and advancing toward a sustainable, circular carbon economy. 
    more » « less
    Free, publicly-accessible full text available March 28, 2026
  2. Possessing a unique combination of properties that are traditionally contradictory in other natural or synthetical materials, Ga-based liquid metals (LMs) exhibit low mechanical stiffness and flowability like a liquid, with good electrical and thermal conductivity like metal, as well as good biocompatibility and room-temperature phase transformation. These remarkable properties have paved the way for the development of novel reconfigurable or stretchable electronics and devices. Despite these outstanding properties, the easy oxidation, high surface tension, and low rheological viscosity of LMs have presented formidable challenges in high-resolution patterning. To address this challenge, various surface modifications or additives have been employed to tailor the oxidation state, viscosity, and patterning capability of LMs. One effective approach for LM patterning is breaking down LMs into microparticles known as liquid metal particles (LMPs). This facilitates LM patterning using conventional techniques such as stencil, screening, or inkjet printing. Judiciously formulated photo-curable LMP inks or the introduction of an adhesive seed layer combined with a modified lift-off process further provide the micrometer-level LM patterns. Incorporating porous and adhesive substrates in LM-based electronics allows direct interfacing with the skin for robust and long-term monitoring of physiological signals. Combined with self-healing polymers in the form of substrates or composites, LM-based electronics can provide mechanical-robust devices to heal after damage for working in harsh environments. This review provides the latest advances in LM-based composites, fabrication methods, and their novel and unique applications in stretchable or reconfigurable sensors and resulting integrated systems. It is believed that the advancements in LM-based material preparation and high-resolution techniques have opened up opportunities for customized designs of LM-based stretchable sensors, as well as multifunctional, reconfigurable, highly integrated, and even standalone systems. 
    more » « less
  3. Abstract This paper presents a bilinear log model, for predicting temperature-dependent ultimate strength of high-entropy alloys (HEAs) based on 21 HEA compositions. We consider the break temperature,Tbreak, introduced in the model, an important parameter for design of materials with attractive high-temperature properties, one warranting inclusion in alloy specifications. For reliable operation, the operating temperature of alloys may need to stay belowTbreak. We introduce a technique of global optimization, one enabling concurrent optimization of model parameters over low-temperature and high-temperature regimes. Furthermore, we suggest a general framework for joint optimization of alloy properties, capable of accounting for physics-based dependencies, and show how a special case can be formulated to address the identification of HEAs offering attractive ultimate strength. We advocate for the selection of an optimization technique suitable for the problem at hand and the data available, and for properly accounting for the underlying sources of variations. 
    more » « less
  4. null (Ed.)
  5. The BICEP/Keck (BK) series of cosmic microwave background (CMB) polarization experiments has, over the past decade and a half, produced a series of field-leading constraints on cosmic inflation via measurements of the “B-mode” polarization of the CMB. Primordial B modes are directly tied to the amplitude of primordial gravitational waves (PGW), their strength parameterized by the tensor-to-scalar ratio, r, and thus the energy scale of inflation. Having set the most sensitive constraints to-date on r, σ(r) = 0.009 (r0.05 < 0.036, 95% C.L.) using data through the 2018 observing season (“BK18”), the BICEP/Keck program has continued to improve its dataset in the years since. We give a brief overview of the BK program and the “BK18” result before discussing the program’s ongoing efforts, including the deployment and performance of the Keck Array’s successor instrument, BICEP Array, improvements to data processing and internal consistency testing, new techniques such as delensing, and how those will ultimately serve to allow BK reach σ(r) ≲ 0.003 using data through the 2027 observing season. 
    more » « less
  6. Time-division multiplexing is the readout architecture of choice for many ground and space experiments, as it is a very mature technology with proven outstanding low-frequency noise stability, which represents a central challenge in multiplexing. Once fully populated, each of the two BICEP Array high-frequency receivers, observing at 150 GHz and 220/270 GHz, will have 7776 TES detectors tiled on the focal plane. The constraints set by these two receivers required a redesign of the warm readout electronics. The new version of the standard multichannel electronics, developed and built at the University of British Columbia, is presented here for the first time. BICEP Array operates time-division multiplexing readout technology to the limits of its capabilities in terms of multiplexing rate, noise and cross talk, and applies them in rigorously demanding scientific application requiring extreme noise performance and systematic error control. Future experiments like CMB-S4 plan to use TES bolometers with time-division/SQUID-based readout for an even larger number of detectors. 
    more » « less